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Abstract

Matching Pursuit Decomposition (MPD) is a powerful iterative algorithm for signal decomposi-
tion and feature extraction. MPD decomposes any signal into linear combinations of its dictionary
elements or “atoms”. A best fit atom from an arbitrarily defined dictionary is determined through
cross-correlation. The selected atom is subtracted from the signal and this procedure is repeated
on the residual in the subsequent iterations until a stopping criterion is met. The reconstructed
signal reveals the waveform structure of the original signal. However, a sufficiently large dictionary
is required for an accurate reconstruction; this in return increases the computational burden of the
algorithm, thus limiting its applicability and level of adoption. The purpose of this research is to im-
prove the scalability and performance of the classical MPD algorithm. Correlation thresholds were
defined to prune insignificant atoms from the dictionary. The “Coarse-Fine” Grids and Multiple
Atom Extraction techniques were proposed to decrease the computational burden of the algorithm.
The Coarse-Fine Grids method enabled the approximation and refinement of the parameters for the
best fit atom. The ability to extract multiple atoms within a single iteration enhanced the effective-
ness and efficiency of each iteration. These improvements were implemented to produce an improved
Matching Pursuit Decomposition algorithm entitled MPD++. Disparate signal decomposition appli-
cations may require a particular emphasis of accuracy or computational efficiency. The prominence
of the key signal features required for the proper signal classification dictates the level of accuracy
necessary in the decomposition. The MPD++ algorithm may be easily adapted to accommodate the
imposed requirements. Certain feature extraction applications may require rapid signal decomposi-
tion. The full potential of MPD++ may be utilized to produce incredible performance gains while
extracting only slightly less energy than the standard algorithm. When the utmost accuracy must be
achieved, the modified algorithm extracts atoms more conservatively but still exhibits computational
gains over classical MPD. The MPD++ algorithm was demonstrated using an over-complete dictio-
nary on real life data. Computational times were reduced by factors of 1.9 and 44 for the emphases
of accuracy and performance, respectively. The modified algorithm extracted similar amounts of
energy compared to classical MPD. The degree of the improvement in computational time depends
on the complexity of the data, the initialization parameters, and the breadth of the dictionary. The
results of the research confirm that the three modifications successfully improved the scalability
and computational efficiency of the MPD algorithm. Correlation Thresholding decreased the time
complexity by reducing the dictionary size. Multiple Atom Extraction also reduced the time com-
plexity by decreasing the number of iterations required for a stopping criterion to be reached. The
Course-Fine Grids technique enabled complicated atoms with numerous variable parameters to be
effectively represented in the dictionary. Due to the nature of the three proposed modifications, they
are capable of being stacked and have cumulative effects on the reduction of the time complexity.

1 Introduction

Structural Health Monitoring (SHM) deals with the detection, localization, classification, and prediction
of remaining useful life (RUL) of structures and materials. Numerous Non-Destructive Evaluation (NDE)
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techniques are applicable for SHM; wave-based methods are one of the most commonly used approaches.
Actuators are often employed to excite vibrations that propagate through the media; distributed piezo-
electric sensors at other locations convert the received wave into a voltage that may be analyzed. As
the vibration travels through the medium, the material properties and boundary conditions affect the
propagation of the wave. In a damaged state, changes in material properties or structural integrity cause
a deviance from the baseline, healthy-state system response. As a result, characteristic signatures regard-
ing the quality, or health, of the structure or material may be detected by the sensors. Unfortunately, the
change in response between healthy and damaged conditions is often minor and buried amongst other
dominant features.

Feature extraction is a key step for accurate analysis of these aberrations. Feature extraction detects
the primary components of the signal while neglecting the inherent noise. However, the necessity of
precision in the decomposition complicates the feature extraction algorithm. Failure to avoid mediocre
or inaccurate decompositions may result in the false classification of the structure’s health. A popular
feature extraction technique that addresses these issues is the Matching Pursuit Decomposition algorithm.

2 Motivation

3 Classical MPD

The Matching Pursuit Decomposition (MPD) algorithm was originally developed by Mallat and Zhang
[3] for signal decomposition. In MPD, function segments or “atom” are matched to portions of the signal.
Once the best matched atom is determined, it is extracted from the signal and the algorithm proceeds
onto the next iteration. Any functional representation may be used to define atoms; even convoluted
elements, such as chirps or impulse functions, may be represented with MPD. Each atom is normalized
to unit energy. As a result, the amplitude of a match is merely the cross-correlation value of the matched
atom with the specified portion of the signal. A dictionary is comprised of arbitrarily defined atoms; a
wide variety of atoms may inhabit the same composite dictionary.

MPD is a greedy algorithm that extracts the largest amount of energy possible per iteration. Greedy
algorithms operate by determining the locally optimum solution for a given iteration in an effort to
optimize the global solution [5]. Each iteration is conducted independently with no knowledge of previous
iterations and without any concern for future iterations.

Cross-correlation is used to quantify the degree of similarity between atoms and the reference signal.
During each iteration, the cross-correlation with the signal is calculated for every atom in the dictionary.
The best match from the dictionary is the atom with the largest cross-correlation value and its corre-
sponding time delay. After this optimal match is determined, it is extracted from the signal and stored
for later reconstruction or classification.

The residual after k iterations is represented by Rkx [n], where the signal is notated by x [n]. Equation 1
shows the initialized state prior to the first iteration. The best fit atom from dictionary D is determined
through cross-correlation with the residual as shown in Eqn. 2. The selected atom is subtracted from
the signal (Eqn. 3) and the procedure is repeated on the residual in the subsequent iteration. The
ith matched atom is represented by dγi and its corrosponding cross-correlation with a γi, where the
parameters for a particular atom are notated by y.

R0
x [n] = x [n]	 (1)

aγi = argmaxdγ. ∈D ^R kx [n], dγi

) 	 (2)

Rkx [n] = Rx 1[n] — ^Rk
x [n] ,dγi)aγi 	 (3)

The algorithm is repeated until one of three possible criterions are reached: a specified number of
matches are removed from the signal, a designated amount of energy is extracted from the signal, or the
extracted components remove below a certain threshold amount of energy. These criterions prevent the
algorithm from modeling noise or nonexistent features.



A pseudo code for the MPD algorithm is shown in 3. The algorithm begins with the generation of
the dictionary. The algorithm continually determines and extracts the best matches until a stopping
criterion is met, thus signaling the completion of the decomposition.

Algorithm 1 Matching Pursuit Decomposition
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2: Initialize Kstop, Sstop, k = 0, R0
x [n] = x [n], E0
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MPD routine

3: while k < Kstop or Ex
k > Sstop do

4: aky^ = ^Rkx [n] , dky^

5: Select dictionary element whose time correlation with the Rkx [n] is maximum
6: Rkx [n] = Rxk-

1 [n] — aky^ dky^ [n]
7: k = k +1, Exk = IIR kx II 2
s: end while

Once decomposed, the signal may be reconstructed through the synthesis of the matches as shown
in Eqn. 4. The number of matches is represented by N.

N

x̂ =
	

a yid yi	 (4)
i=1

As mentioned previously, a sufficiently large dictionary is required for accurate reconstruction. This
limitation increases the computational burden of the algorithm.

4 Modifications to the MPD Algorithm

Modifications addressing two aspects of the algorithm are proposed. One approach involves the im-
plementation of an intelligent, self-adaptive, or reduced-in-size dictionary to assuage the complications
caused by abundantly populated dictionaries. The Correlation Thresholding (CT) and Coarse-Fine Grids
(CFG) modifications operate along this concept through the reduction of the dictionary’s size. A sec-
ond method, the Multiple Atom Extraction technique, modifies the structure and flow of the algorithm.
The improved MPD algorithm (entitled MPD++) and its modifications are discussed in the following
sections.

4.1 Correlation Thresholding

Significant time complexity is required while computing the cross-correlation values for each atom. While
a sufficiently complete dictionary is required for accurate decomposition, a majority of the atoms may not
be used throughout the decomposition process. The removal of these unused atoms from the dictionary
reduces the size of the dictionary and potentially offers significant increases in performance with no cost
in accuracy.

CT begins by calculating the correlation values for all of the atoms in the dictionary through a
standard MPD iteration. After the initial iteration, the correlation ratio for each atom is calculated.
The correlation ratio (CR), for a particular atom is defined as that atom’s maximum correlation value
divided by the largest correlation of all atoms in the dictionary (Eqn. 5). CT applies a threshold to the
correlation ratio for each atom in the dictionary. Atoms with correlation ratios above the threshold form
the reduced dictionary; atoms that do not meet this threshold are rejected. This reduced dictionary is
used in the subsequent iterations instead of the full, base dictionary. With fewer atoms to analyze, the
algorithm will require less time per iteration. After a repruning criterion is met, as discussed below,
the reduced dictionary will be thrown out and the base dictionary will be repruned to generate a new
reduced dictionary.

CRn =	 (R
x
 
[n], dyi)	

(5)argmaxdγ i ED ^ (Rkx [n] , dyi )^
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Figure 1: A visualization of Correlation Thresholding

The cross-correlation calculations required for CT are computed recursively during a classical MPD
iteration. The only increase in computational complexity due to CT is the determination of offending
atoms and their removal from the dictionary. This increase in computational load is trivial compared to
the cost of calculating correlation values with the full, unreduced dictionary in the unmodified algorithm.
Figure 1 provides a visualization of CT. While this example uses superposed two-dimensional Gaussian
distributions, it resembles the results of an actual dictionary. In this example, atoms are generated by
varying two variables, X and Y. Each point on the grid represents specific parameters for a particular
atom. Local maximums represent atoms that fit well into the signal. If one of the variables is offset
marginally from a local maximum, its amplitude decreases slightly. This effect produces the gradual
sloping effect observed in the first plot in Fig. 1.While the top plot shows an example base dictionary,
the bottom plot shows a reduced dictionary. The dark blue areas mark atoms that were excluded from
the reduced dictionary due to a reduction threshold violation.

4.1.1 Reduction Threshold

The reduction threshold specifies the minimum correlation ratio that will be admitted in the reduced
dictionary. Subsequent iterations use the reduced dictionary to determine the best matched atom. To
ensure that no atoms are lost during the algorithm’s operation, a base dictionary with all atoms is
preserved. When either the reprune or ultimate thresholds are violated, the dictionary is repruned from
the base dictionary rather than the current reduced dictionary. This ensures that all atoms receive equal
opportunity for representation in the decomposition of the signal. The ultimate and reprune thresholds
are determined relative to the reduction threshold as discussed in section 4.1.5.

4.1.2 Ultimate Threshold

The ultimate threshold dictates the absolute minimum correlation ratio value accepted as a match in
the decomposition. To ensure an up-to-date reduced dictionary, it must be repruned occasionally from
the base dictionary. If the current match’s correlation ratio violates the ultimate threshold, the match
will be discarded, the dictionary will be repruned, and the iteration will be repeated. Otherwise, the
algorithm will extract the match and continue onto the next iteration. A violation of this threshold wastes
computational time, but helps to ensure the integrity of the reconstruction. The reduction threshold only
determines which atoms form the reduced dictionary. After the construction of the reduced dictionary,
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the reduction threshold plays no role in the algorithm until the next repruning. As a result, another
threshold must be implemented to dictate when the algorithm is to discard the current reduced dictionary.
The ultimate threshold is typically set relative to the reduction threshold to produce the desired emphasis
of accuracy or performance; however, these thresholds operate independently in the algorithm.

4.1.3 Reprune Threshold

As mentioned previously, violating the ultimate threshold wastes computational resources. If the dictio-
nary is repruned just before the ultimate threshold is breached, the algorithm may avoid the rejection
of a match and repetition of an iteration. The reprune threshold helps to ensure smooth flow of the
MPD++ algorithm.

The reprune threshold is the second factor in the repruning of the dictionary. The reprune threshold’s
purpose is to reprune the base dictionary before a violation of the ultimate threshold occurs. This
threshold is typically set slightly above the ultimate threshold. As a result, the dictionary may be
repruned before the ultimate threshold is violated. However, setting too high of a reprune threshold will
cause the algorithm to excessively reprune the dictionary at the expense of potential performance gains.

If the current match’s correlation ratio is below the reprune threshold and above the ultimate thresh-
old, it will be subtracted from the signal and the dictionary will be repruned at the beginning of the
following iteration. If the reprune threshold is not offended, the algorithm will simply extract the atom
and continue onto the next iteration without changing the dictionary.

4.1.4 Interactions between Reprune and Ultimate Thresholds

The melody of interactions between the reprune and ultimate thresholds directly influence the gains in
computational performance and the accuracy of the reconstruction. The optimal thresholds are depen-
dent on the signal being decomposed. However, depending whether the emphasis is on obtaining better
accuracy or faster results, the thresholds may be approximated and still produce significant increases in
performance. If the emphasis is on accuracy, larger, more conservative values of the reprune and ultimate
thresholds are recommended; otherwise if maximum performance gains are required, lower thresholds
may be chosen.

4.1.5 Identical Reconstruction versus Maximum Performance

Accuracy is often of primary importance. Unfortunately, standard MPD is often too computationally
expensive to employ. Modifications that reduce the computational burden of the algorithm are desirable;
however, reconstructions with an improved algorithm are often required be identical to those produced
by classical MPD. Correlation Thresholding may be applied without losing accuracy. If the ultimate and
reduction thresholds have identical values, the program will discard any matches that have a correlation
ratio below those of the atoms that were rejected from the dictionary. This prevents the extraction of
any matches when an atom that was removed from the reduced dictionary may offer a better match.

After the extraction of other matches in previous iterations, it is possible that an atom rejected from
the reduced dictionary may have a correlation ratio above the reduction threshold. While this was not
observed during the testing of the modification, it is plausible. To ensure the highest accuracy obtainable,
the ultimate threshold may be set slightly above the reduction threshold. The increase in the confidence
and accuracy of the results will sacrifice potential performance gains, but the modified algorithm will
still be significantly faster than standard MPD.

The fastest possible reconstruction while maintaining respectable accuracy may often be the primary
focus. If the ultimate threshold is set at a value below the reduction threshold, the improved algorithm
will be able to extract more atoms before having to reprune the base dictionary. However, it is possible
for the program to select an atom that normally would not have been picked or miss the true best match
for that iteration because it was not present in the reduced dictionary. Significant gains in computational
performance may be obtained at a decrease in accuracy that is acceptable for many applications. The
reprune threshold should still be set slightly above the ultimate threshold and may be above, equal to, or
below the reduction threshold. The maximum performance gains are obtainable when both the reprune
and ultimate thresholds are below the reduction threshold.



Figure 2: Example of different emphases for Correlation Thresholding

For a balance between accuracy and performance, reprune and ultimate thresholds slightly above and
below, respectively, are recommended. Identical reconstruction cannot be guaranteed, but the hybrid
emphasis still offers significantly improved performance.

The thresholds and correlation ratio of the matched atom determine the action taken by the algorithm.
As long as the correlation ratio is above the ultimate threshold, it will be accepted. Figure 2 shows a
flowchart for the CT technique. Blue, dashed arrows and boxes indicate steps and flow paths that differ
from classical MPD.

4.1.6 Permanent Deletion Threshold

There are often atoms in the dictionary that are very poor matches with the signal and are excluded from
all reduced dictionaries during the decomposition. Removing these atoms offers an additional opportu-
nity to further reduce the dictionary. Any atoms with correlation ratios below the permanent deletion
threshold will be removed from the base dictionary and will not be included in future reprunings of the
dictionary. Significant performance gains are possible with a permanent deletion threshold; however, the
risk of losing accuracy may deter its use in many applications.

4.2 Coarse-Fine Grids

Another method to reduce the size of the dictionary is to sparsify the dictionary using coarse and fine
grids. The Coarse-Fine Grids (CFG) technique allows for the approximation and refinement of the
parameters for the best fit atom. The best-correlated atom in the coarse grid is determined through
a standard MPD iteration, but the atom is not immediately subtracted. Instead, the coarse grid is
“zoomed-in” and a fine grid is applied around the selected atom. The best match within the fine
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Figure 3: Improved Accuracy with CFG

grid is determined and extracted from the signal. Similar research has been conducted using quadratic
interpolation [1], Coarse-Fine Grids and interpolation [2], and Particle Filtering [4].

4.2.1 Improving Accuracy versus Time Complexity

In scenarios that require the highest accuracy possible, the implementation of CFG produces satisfying
results. In accuracy mode, classical MPD and MPD++ begin with the same dictionary, represented
by a grid as shown in Fig. 3. After the best fit atom is determined with MPD++ (the red dot), the
algorithm generates a fine grid around the selected atom. From this fine grid, the best match (the green
dot) is determined and extracted from the signal. Although this technique increases the accuracy of the
extraction, the generation and testing of a fine grid increases computational time. Multiple fine grids
may be implemented to additionally increase the accuracy of the reconstruction and extracted features.
Each fine grid is essentially a “zoomed-in” version of the previous, coarser grid. With an emphasis on
accuracy, the CFG modification provides MPD++ an advantage over standard MPD by allowing the
modified algorithm to select atoms that the latter cannot.

If the reduction of the time complexity is of utmost concern, a second approach offers significant
reduction in computational demands of MPD at a minor decrease in accuracy and extracted energy. In
this approach, MPD++ and classical MPD begin with the same grid. In the modified algorithm, the
coarse grid is generated by ‘zooming-out’ or sparsifying the base grid as shown on the left in Fig. 4.
After the best fit atom (the red dot) is determined in the coarse grid, a fine grid is generated (middle
image in Fig. 4). The final best match (the green dot) in this fine grid is extracted from the signal and
the algorithm proceeds onto the next iteration. The fine grid for MPD++ maintains the same resolution
as the classical MPD’s grid. This approach allows both the modified and standard MPD iterations
to select identical atoms. Due to the sparsity of the coarse grid, MPD++ has a significant advantage
computationally. A minor loss of accuracy occurs when the fine grid around the selected coarse grid
point does not contain the true best atom. For most applications, the loss in accuracy is negligible;
however, the increases in computational efficiency are substantial.

4.2.2 Multi-Parameter Atoms

Due to the nature of the Coarse-Fine Grids technique, the greatly sparsified dictionary allows atoms
with numerous parameters to be readily adopted into the MPD algorithm. Without CFG, atoms with
numerous parameters causes the dictionary size to increase exponentially with the number of parameters
and severely limits the effectiveness of standard MPD. The Coarse-Fine Grids technique allows complex
atoms to be represented in the dictionary while maintaining a reasonable dictionary size. With the
CFG technique, more convoluted element types may be implemented before the computational burden
becomes unbearable.



Figure 4: Improved Performance with CFG

4.2.3 Choice of Grids

The selection of grid ranges and increments is only marginally dependent on knowledge of the signal. The
sampling frequency and length of the signal often dictate the ranges and increment sizes for the atom
parameters. In fact, frequency is dependent solely on the sampling frequency. The frequencies of the
atoms typically range between a single coarse increment above zero and below the Nyquist Criterion. This
ensures that a broad range of frequency values inhabit the dictionary; a sufficiently complete dictionary
is required for decomposition. Other parameters, such as time scale, should be chosen so that the widest
atom stretches across a significant portion of the signal while the smallest atom is capable of modeling
localized behavior.

Some parameters are more sensitive to poor matching with an excessively coarse grid. Frequency is
a notable example of this effect; an overly coarse frequency grid may cause the algorithm to jump over
the true best-correlated atom and instead pick a suboptimal match. This occurs because the atom on
the coarse grid closest to the best match may be out of phase with the matched signal for a substantial
portion of the matched signal segment. Other parameters, such phase shift or time scale may be less
sensitive to this effect. A phase shift grid may be very coarse because the atom may be matched to
a slightly offset position in the signal with a nearly identical correlation value. Whether a particular
parameter requires a smaller increment is dependent on the nature of the parameter.

The ranges and increments may be determined for most parameters when only the duration and
sampling frequency of the signal are known. However, a significant reduction in the time complexity is
possible when additional knowledge of the signal is applied.

4.3 Multiple Atom Extraction

With even the most effective, abridged dictionary, MPD is fundamentally limited by the nature of
its own existence. The iterative basis guarantees that numerous calculations must be performed to
obtain the final decomposition. The extraction of multiple atoms per iteration is proposed to reduce
the computational burden of the algorithm. The Multiple Atom Extraction (MAE) modification alters
the flow and organization of the MPD algorithm instead of merely addressing the encumbering effects
caused by excessively large dictionaries.

Classical MPD determines and extracts the single best-correlated atom. However, MPD++ deter-
mines a specified number of atoms with the largest correlation values, referred to as the “top atoms”.
Next, the algorithm subtracts the absolute best-correlated atom from the dictionary; this atom is called
the “primary atoms” and all other top atoms are called “secondary atoms”. Then, the algorithm deter-
mines whether the next best correlated secondary atom overlaps the footprint of a previously removed
match. Any overlap will result in a rejection of the atom; however, if no overlap exists, the atom will
also be subtracted from the dictionary. The process is repeated until all of the stored top atoms are
either extracted or rejected. When this condition is reached, the algorithm will proceed onto the next

8



Figure 5: Example of Multiple Atom Extraction

iteration.
An example of Multiple Atom Extraction is shown below in Fig. 5. This signal shows four sinusoidal

segments of different frequencies with the addition of white noise. Due to the greedy nature of MPD
and the normalization of the atoms to unit energy, the features with the largest amplitude are extracted
first. In this example, the algorithm will extract feature B first, proceeded by the extraction of features
D and then A. An overlap, represented by the green region, exists between the footprints of features B
and C as shown in the lower plot in Fig. 5. The extraction of feature C will be rejected. With Top
Atom Tracking mode, discussed below, the algorithm will reattempt the extraction of feature C. Since
the extraction of feature B did not influence the correlation value of feature C, this final feature will be
extracted. It may be seen that the footprints of features A, B, and D do not overlap.

4.3.1 Buffer Range

The buffer range is a specified portion of the atom’s time window that is padded to each side of the
extraction site. The buffer range’s purpose is to prevent secondary atoms from being extracted too close
to a previously extracted atom. Without a buffer range, the extraction of a match may influence the
correlation values of other atoms in the same proximity; this may result in detrimental effects on the
quality of future extractions. For the fastest deconstruction, no buffer range is necessary and respectable
results are obtainable. When accuracy is emphasized, the application of a buffer range is recommended
to produce more conservative results. A reduction in time complexity relative to classical MPD is still
observed. The footprint of a match is defined as the matched atom’s time window plus the buffer zones
on both sides of the extraction site.

4.3.2 Attempted Number of Atoms to Extract per Iteration

As the algorithm attempts to extract more atoms per iteration, the time complexity and amount of
extracted energy tends to decrease. For conservative, accurate reconstructions, it is recommended to
attempt extraction on a small number of atoms per iteration. For maximum performance, numerous
atoms may be extracted in each iteration. In fact, if an excessively large number of top atoms are stored,
the modification offers incredible performance increases with only a minor loss in extracted energy.

4.3.3 MAE Cutoff Level

A popular stopping criterion is to specify the number of matches to extract. As the algorithm progresses
and nears this limit, it is possible that secondary atoms may remove less energy than the primary atom in
the subsequent iteration. This undesirable consequence may adversely affect the signal’s decomposition
and the accuracy of the extracted features. As a result, a cutoff level may be specified to maintain
the quality of the decomposition. When there are fewer unextracted atoms remaining than the cutoff
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level, the algorithm will deactivate MAE mode and will extract the remaining atoms individually. This
increases the accuracy and amount of energy extracted at the cost of potential performance gains.

4.3.4 Reuse Atoms

Features may sometimes appear recurrently throughout a signal; measurements with a periodic basis
are a primary example. The Multiple Atom Extraction modfication only stores an atom’s single best
correlation value. As a result, the algorithm only detects the first appearance of a recurring feature. The
“resuse atoms” option forces the program to search for multiple locations in the signal where an atom
may generate large correlation values.

For a given atom, the search for well-correlated matches beyond the first typically requires an increase
in computational cost. For complicated or non-periodic signals that lack repetition, such as chirps, a
single atom is seldomly matched multiple times. As a result, searching for recurrent features costs
computational resources while offering no increase in extracted energy. However, signals with redundant
features may observe an increase in performance rather than a cost.

For an unknown signal, it is recommended to force the program to search for recurrent features to
determine the best decomposition. Searching for repetition on a non-periodic signal does not affect the
amount of energy extracted.

4.3.5 Top Atom Tracking

Sometimes the algorithm will uncover atoms that overlap but model different parts of the signal, such
as different frequency components. The “Top Atom Tracking” (TAT) mode offers previously rejected
secondary atoms an additional chance to be extracted. If TAT is active, the algorithm will store an extra
top atom to use as a reference; extraction will never be attempted on this extra stored atom. After the
first pass through the list of the top atoms and the extraction of as many atoms as possible, the algorithm
will recompute the correlation values for the top atoms that were rejected in the previous pass due to
a footprint overlap. If these atoms have a correlation value larger than the extra top atom stored, the
atoms will be extracted; otherwise these atoms will be permanently rejected from the current iteration.
This process of rechecking secondary atoms repeats until all secondary atoms are either extracted or
rejected. Therefore, numerous atoms overlapping each other have a chance to be extracted.

4.3.6 Cumulative Effects of Multiple Modifications

All three modifications are cumulative and may result in phenomenal decreases in the computational
burden of MPD. The modifications may be customized to achieve the accuracy or time complexity
required for a particular application.

5 Conclussion

All three modifications resulted in significant improvements in the time complexity. Due to the nature of
the three proposed modifications, they are capable of being stacked and have cumulative effects on the
reduction of the time complexity. The goal of improving standard MPD has been achieved. Reductions
in computational time of 1.9 and 44 were observed for the emphases of accuracy and performance,
respectively. Substantial performance increases, such as a 300 times improvement in time complexity,
may be achieved at a slight cost in accuracy. However, a significant performance increase is still possible
if more accuracy is desired. The MPD++ algorithm will be tested in future work to determine the
quality of the extracted features. The modified algorithm is significantly faster; however, it must be
proven that valuable information for SHM analysis is not being lost. The algorithm will also be tested
on other signals. While performance and accuracy improvements may be observed for many signals; the
magnitude of improvement observed in this tested signal is not necessarily typical or representative of
true gains.
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